Social assessment by gender when communicating technical and scientific information

Main Article Content

Saulo Gonzalo
Vicente Torres-Zúñiga

Abstract

In this study, 297 high school students—whose average age was 15—were asked to assess brief popular scientific publications that examine the connection between people's biochemical states and violence. The purpose of the review was to identify any gender bias in the texts. On a scale of 0 to 10, two "mirror questionnaires" were utilized to evaluate this bias. The first questionnaire received responses from 181 pupils, while the second group received responses from 116 students. There were two test parts and control questions on both questionnaires. The first test component of the questionnaire included a photo and details about a female expert researcher. It was followed by a note listing the names of male experts. The expert's gender and the names listed in the remark were switched in the second questioning. Between sections, one set of pupils acted as a control for the other in this manner. In order to analyze the data, it was necessary to compare the questionnaires and determine statistical indices for every question. For every question and group, statistical measures such as mean, standard deviation, and mode were ascertained. It was determined whether gender obtained greater scores or whether there were times after combining the data. The findings show that while males receive superior evaluations in five out of the thirteen items examined with mode, females receive better average evaluations for each question.

Downloads

Download data is not yet available.

Article Details

How to Cite
Saulo Gonzalo, & Torres-Zúñiga, V. (2025). Social assessment by gender when communicating technical and scientific information. INNOVA Reseach Journal, 10(1), 32–49. https://doi.org/10.33890/innova.v10.n1.2025.2698
Section
Education
Author Biographies

Saulo Gonzalo, Escuela Nacional Preparatoria # 7 (ENP 7), Universidad Nacional Autónoma de México (UNAM)

Saulo Gonzalo Carmona Contreras, Mexicana, Físico y Maestro en Ingeniería, UNAM, Cordinador de del Colegio de Matemáticas de la Escuela Nacional Preparatoria # 7,  

Líneas de Investigación: se centra en la didáctica educativa en el área físico- matemática a nivel bachillerato, participa activamente como revisor de los procesos educativos del colegio de matemáticas de la ENP-UNAM. 

Google Scoolar: https://scholar.google.com/citations?user=c-c5xA4AAAAJ&hl=en

Vicente Torres-Zúñiga, Escuela Nacional de Ciencias Forenses de la Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México

Vicente Torres Zúñiga, Mexicana, Físico con doctorado en ingeniería, Universidad Nacional Autónoma de México (UNAM), Técnico Académico de Tiempo Completo de la Escuela Nacional de Ciencia Forense de la Facultad de Medicina UNAM. Líneas de investigación: desarrollo, difusión y divulgación de modelos físico-matemáticos aplicados en el quehacer forense. 

Google Scoolar:  https://scholar.google.com/citations?user=Pz1kbiQAAAAJ&hl=es

 

References

Blades, A. H. (2011). Helping children correctly say “I don't know” to unanswerable questions. Journal of Experimental Psychology: Applied, 17(4), 396–405. https://doi.org/10.1037/a0026150

Bernardo, Á. (2013, junio 18). ¿Está la maldad escrita en nuestros genes? https://hipertextual.com/2013/06/maldad-escrita-en-nuestros-genes

Bertomeu, G. (2011). Nativos digitales: una nueva generación que persiste en los sesgos de género. Revista de Estudios de Juventud (92), 187-200.

Braman, D. & Kahan, M. (2011). Cultural cognition of scientific consensus. Journal of risk research, 14(2), 147-174. https://scholarship.law.gwu.edu/cgi/viewcontent.cgi?article=1269&context=faculty_publications

Bozzato, P., Fabris, M. A., & Longobardi, C. (2021). Gender, stereotypes and grade level in the draw-a-scientist test in Italian schoolchildren. International Journal of Science Education, 43(16), 2640-2662. https://doi.org/10.1080/09500693.2021.1982062

Carmelo Polino, Y. C. (2019). Percepción pública de la ciencia en Iberoamérica. Evidencias y desafíos de la agenda a corto plazo. Revista Iberoamericana de Ciencia, Tecnología y Sociedad, 14(42), 115-136. https://www.redalyc.org/journal/924/92462512008/html/

Carmona-Contreras, S. C., Torres-Zúñiga, V. (2019). Google Sheets. https://docs.google.com/spreadsheets/d/1XgJEgBXuVWZwecX38xGsSNx3VSMkCQ73/edit?usp=sharing&ouid=109679703427109934867&rtpof=true&sd=true

Eaton, A.A., Saunders, J.F., Jacobson, R.K. et al. (2020). How gender and race stereotypes impact the advancement of scholars in STEM: Professors’ biased evaluations of physics and biology post-doctoral candidates. Sex roles, 82 (127-141). https://doi.org/10.1007/s11199-019-01052-w

FECYT, F. E. (2022). Encuesta de percepción social de la ciencia y la tecnología en España.

Google LLC. (n.d.). Google Sheets. https://docs.google.com/spreadsheets/

Heffernan, T. (2022). Sexism, racism, prejudice, and bias: A literature review and synthesis of research surrounding student evaluations of courses and teaching. Assessment & Evaluation in Higher Education, 47(1), 144-154. https://doi.org/10.1080/02602938.2021.1888075

Instituto Nacional de las Mujeres, México. (2007). El impacto de los estereotipos y los roles de género en México. http://cedoc.inmujeres.gob.mx/documentos_download/100893.pdf

Llorens, A., Tzovara, A., Bellier, L & Bhaya-Grossman, I. (2021). Gender bias in academia: A lifetime problem that needs solutions, Neuron,Neuron, 109(13), 2047-2074. https://doi.org/10.1016/j.neuron.2021.06.002

Maeder, E. M., McManus, L. A., McLaughlin, K. J., Yamamoto, S., & Stewart, H. (2016). Jurors’ perceptions of scientific testimony: The role of gender and testimony complexity in trials involving DNA evidence. Cogent Psychology, 3(1). https://doi.org/10.1080/23311908.2016.1264657

Menacho, R. V. (n.d.). Los hombres que no escuchaban a las mujeres. https://www.youtube.com/watch?v=vf4CR1sd8FQ

Menacho, R. V. (2018). Reflexiones sobre feminismo y lenguaje inclusivo y mi experimento. https://www.youtube.com/watch?v=sF9XLd19fR4

Moss-Racusin, C, Dovidio, J., Brescoll, V., Graham, M., & Handelsman, J. (2012). Science faculty’s subtle gender biases favor male students,» Proceedings of the national academy of sciences. 109(41), 16474-16479. https://doi.org/10.1073/pnas.1211286109

Polino, C. (2011). Los estudiantes y la ciencia : encuesta a jóvenes iberoamericanos. Buenos Aires: Organización de Estados Iberoamericanos para la Educación.

Rangel, T. d. (2023). Retos para la educación inclusiva de las niñas, niños y adolescentes de familias jornaleras agrícolas migrantes. Revista Iberoamericana de Educación Rural, 1(1), 49 -65.

Segovia-Saiz, C., Briones-Vozmediano, E., Pastells-Peiró, R., González-María, E., Gea-Sánchez, M. (2021). Techo de cristal y desigualdades de género en la carrera profesional de las mujeres académicas e investigadoras en ciencias biomédicas. Gaceta Sanitaria, 34(4), 403-410. https://dx.doi.org/10.1016/j.gaceta.2018.10.008

Squazzoni, F., Bravo, G., Farjam, M., Marusic, A., Mehmani, B., Willis, M., Birukou, A., Dondio, P., & Grimaldo, F. (2021). Peer review and gender bias: A study on 145 scholarly journals. Science advances, 7(2). https://doi.org/10.1126/sciadv.abd0299

The MathWorks. (n.d.). MathWorks. https://la.mathworks.com/products/matlab.html

Verdugo-Castro, S., M. C.-G.-H. (2022). University students’ views regarding gender in STEM studies: Design and validation of an instrument. Education and Information Technologies, 27(9), 12301-12336. https://doi.org/10.1007/s10639-022-11110-8

Wetenschappen, J. P. (2015, enero 2). Wikimedia Commons. Wikimedia Commons.

Wetenschappen, K. K. (2019, septiembre 29). Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Mari%C3%ABtte_Boon_%2826739257194%29.jpg

Younan, M. (2023). What makes an expert persuasive? Examining the influence of evidence quality and superficial cues on jurors' evaluation of expert evidence. Sydney: UNSW.